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1. Introduction

N a previous publication [1] the momentum-impulse theorem (or

MI theorem) was used for estimating the maximum parachute
drag force F,,, generated during inflation. This paper showed how to
calculate F,, for any type of parachute, reefing, and drop
conditions. The author [2] continued the discussion, this time by
applying the theorem to a more specific application, namely to that of
hemispherical parachutes dropped from fixed points such as cranes,
buildings, or from very slow-moving aircraft. This engineering note
continues using the impulse and momentum concepts, this time for
the analysis of clusters of hemispherical parachutes dropped from
slow or fast aircraft (parachute clusters are built by connecting at least
two parachutes side-by-side [3]). As with [1,2], the goal here is to
sharpen our understanding of the inflation process in general and of
cluster inflation in particular, using new analytical approximations
derived from the MI theorem. In some cases, these approximations
confirm key knowledge that so far has been acquired only
empirically. In other cases, the results suggest altogether new or
extended conclusions.

The estimator used herein is based on the following formula,
which expresses the maximum drag F,, in terms of the a priori
knowledge of the opening-shock factor C; [1,3-5]:

1
Fmax = (SCD)sd(EszZ)Ck (1)

This expression is written in terms of the dynamic pressure sustained
by the parachute—payload system at the beginning of the inflation
process, most typically at the moment of the full stretching of the
suspension lines, and also in terms of the parachute’s drag area
(SCp)yy> generated when the parachute is fully opened and
descending in a steady manner. The empirical data compiled in [3-5]
on the value of C; can be used, along with a procedure motivated by
the MI theorem [1], to predict the value of F',, for any parachute and
reefing systems. Here the discussion will proceed from an analytical
and exact result that also follows from the theorem, but a result that
applies only to parachute systems inflating along a vertical trajectory,
including many current cluster applications involving very large
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parachutes (i.e., 100 ft diam or larger):

2T
Ci= [—m] (2a)
Rmn%ill
with
V., gD
I'= (1 _VC+7’;nfill) (2b)

As derived in [2], this result involves knowing the speeds V; and V,
characterizing the parachute-payload fall speeds at the beginning and
end of the inflation process, respectively. The factor I represents the
sum of the momentum change experienced by the parachute-payload
(per unit initial speed and mass) and of the impulse supplied by
gravity (namely the term proportional to the gravitational
acceleration constant g). Usually a small contribution for human-
sized parachutes, the gravitational impulse becomes a major
contributor to inflation dynamics for very large parachutes as will be
seen here. Another important input is the so-called inverse mass ratio
R, [3.5], a nondimensional constant defined as

32
R, = P(SCp)h 3)

m

The mass ratio is an estimate of the air mass that decelerates (or
accelerates) along with the parachute system during inflation. As
such, R,, reveals how important drag is relative to total weight and
hints at which types of deceleration or acceleration profiles (and
parachute wakes) are to be anticipated during the inflation process.
Note that (2) is valid for any value of the mass ratio, although the
applications considered here are more typical of large-R,, systems.

Equation (2) also involves the very important concepts of
generalized filling time nf)' and standard filling time ng;, two
nondimensional numbers that are built out of the dimensional
inflation time 7. The correspondence between all three temporal
concepts is as follows:
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Here ngy = (¢, — t;)V;/D,y with D, being the so-called nominal
canopy diameter, defined from the total canopy surface area S, as
Dy = (4S,/m)"/? for hemispherical-type canopies [3]. Finally, the
constant I is the normalized integral of the drag force over time (i.e.,
over the interval fg;), thereby being given by
I = [[Fp(f) df]/ Frnaxtrn [1]. The appearance of the drag integral
in (4) makes the point that n) ~ ng; when Iif ~ 1, i.e., when the
opening force is pretty much sustained at its maximum level
throughout the inflation process. On the other hand, nfy < ng,
when I'f < 1, i.e., when the inflation dynamics generates low-level
drag during most of the process and a high but brief drag peak at the
end. In other words, nt)' represents the filling time associated with
the dominant peak of the Fj, vs f curve [1].

Note that Eq. (2) can be used to study any type of parachute and
reefing designs. Applying it to the case of hemispherical parachute
clusters is also straightforward, although a key assumption shall be
used to enhance its simplicity while maintaining its usefulness.
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II. Parachute Clusters Basics
A. Design Advantages

The parachute cluster is the standard solution to the airdropping
and recovery of high-weight payloads that are required to land at low
velocity. Parachute systems used for the air delivery of military cargo
or for the atmospheric reentry of Apollo-type spacecraft are two
examples of clusters handling payloads in excess of 5000 Ibs. The
advantages of using clusters reside primarily in the ease of rigging, as
well as of the ease of building and packing smaller parachutes,
compared with using one single, but also very large parachute [3,4].
Moreover, and this is important for drops required to be carried out at
low altitudes above ground, clusters inflate at much faster rates, and
therefore require less altitude for full deployment and inflation.

B. Lead/Lag Problem

Because the member chutes of a cluster are in close proximity to
each other, there will be interference which will affect the overall
drag-producing capacity of the system, as well as its inflation. With
respect to the latter, the major technical challenge in cluster design
has been to make each member inflate at roughly the same time and at
the same rate, i.e., to obtain the perfectly synchronized opening of all
the parachutes of the cluster so to avoid the extreme loading that a
fewer number of cluster members would experience if opened
prematurely [3,6,7]. Typically, unsynchronized inflation, or “lead/
lag” inflation, involve the early opening of at least one cluster
member, an event that would then impede the inflation of all other
members. Lead/lag comes about by the expanding skirts (mouths) of
the fast-inflating canopies getting in the way of the skirts of the
slower opening canopies. Moreover, with canopies opening
prematurely, a larger than expected deceleration of the parachute-
payload would occur, which in turn would further reduce the
pressure inside the laggers and further slow down their opening rates.
Mastering of the lead/lag problem has been achieved by line-reefing
the skirt of each cluster member, a strategy that keeps the skirt/mouth
to a smaller diameter during the early part of inflation, thereby
keeping the skirt of each cluster member out of each other’s way [3].
The reefing line is severed by time-activated cutters during the later
stages of the inflation process. Another approach, pioneered by Lee
and Sadeck [7], consists in physically tying together the contiguous
skirt sections of the members with reefing lines, thus eliminating the
gaps between the neighboring parachutes. The result is a
configuration that inflates like a single canopy. Again, timed line
cutters sever the reefing lines during the later stages of the inflation
process. Actual opening force data collected on clusters can be found
in [4], as well as in the work of Lee et al. [6,7], and in the parachute
studies of the F-111 ejection capsule by Behr [8] and Johnson [9].

III. Inflation and Descent Properties: Cluster vs Single
Parachute

The use of Eq. (2) becomes very informative once several of the
cluster-specific inputs, such as (SCp),q and nfy, are expressed in

terms of those characterizing each cluster member.

A. Drag Area

The cluster empirical data compiled in [3,4] include the
parameterization of the drag loss that occurs during steady descent, a
loss mainly caused by each member flying in a tilted attitude.
Whereas the tilt can be reduced by increasing the distance between
each canopy and payload via the use of longer bridles [4], cluster drag
losses are inevitable. This effect is usually represented as an average
with the following equation, i.e., one that relates the steady-state drag
coefficient of a cluster composed of j parachutes to that of single
parachute (of the same type):

(Cp0) = W) (Cpo) Y (5)

The factor ¥(j) is the so-called drag-loss coefficient, a number that
depends strongly on the value of j. The data of [4] shows that ()
depends also on the tilt angle being flown by each member.
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Typically, ¥(4) ~ 0.80 for cluster members flying with high tilts and
¥ (4) ~ 0.93 for cluster members flying with low tilts (either low- or
high-porosity). Note that the drag coefficients Cp, used in (3) are
calculated with respect to the total canopy surface area S (including
the area of the vents, and of any other openings [4]). By definition of
So, this means that

Sy’ = jsy ®)

B. Inflation Time

Two crucial assumptions involving inflation duration will be used
here: 1) assuming the cluster members inflating in perfect
synchronicity (i.e., no lead/lag), and 2) that the filling time of each
cluster member being similar in magnitude to that of each cluster
member descending alone, albeit with a smaller payload, but at
descent rates that are similar to that of the cluster. These two
approximations mean that

Vi tfill |j—cluster ~ Vi tfill |cluster—member ~ Vi tfill |l—cluster
According to the definition of ngy,, this in turns means that
—_ W, 0 _ nd 1)
Vitsinlj-cuser = Dy gy = Do gy @)

an expression that involves again the nominal diameter
Dy = (4S,/m)"/2. Combining (6) and (7) yields this important new

result:
: /1
”15{1: = ; ”gilu) ®)

Equation (8) implies the well-known empirical fact that, in
nondimensional terms, parachute cluster inflation is characterized by
smaller filling times. Again, the one important physical assumption
behind (7) and (8) is that of minimized mutual interference. This
means that (8) should not be expected to be very accurate for systems
that have substantial lead/lag problems.

IV. Maximum Inflation Force for Clusters
A. Main Result
Putting (2), (4), (5), and (8) into (1) yields this final result:

Fi = (1pV-2)(ScD)“)[LM](1 v
2 1

d i 1) 4
* Uragis v
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Here the mass ratio R,(,{) is still that of the entire cluster parachute
system; in the same vein, the drag integral I'f| j-cluster 18 the value
obtained after integrating the total drag force measured on the cluster.
On the other hand, the ratio V;/V; has been rewritten as V;f )/V;, to
point out the sensitivity of V, and insensitivity of V; on the number of
cluster members. The reason for V; being mostly insensitive to j is
that its value is determined mainly by the drop-aircraft’s speed,
payload weight, parachute unfolding dynamics during deployment,
and deployment duration. Note also that the gravitational impulse is
independent of the number of cluster members, a result of Eq. (7) and
of V; being insensitive to j. Finally, the product [j(j)]*’*> may or
may not change appreciably with j, depending on whether the
canopies are flying at low or high tilt. For example, the data of [3,4]
forribbon chutes at j = 3 and j = 5 suggests [jy(j)]*/? varying from
4.81 to 9.54 for small-tilt flight, and from 4.07 to 6.55 for high-tilt
flight.

B. Numerical Example

Consider the case of a 4-cluster of low-porosity, flat circular
parachutes of the G-11 type [4], but line-reefed along skirt sections
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according to the method of Lee and Sadeck [7] (an approach that
guarantees synchronicity). Here the parachute system is carrying a
14,000 1b payload and each parachute opens completely in about six
seconds. Each member has a nominal diameter of D, = 100 ft,
which yields, as a cluster, a near sea-level descent rate of
~25-30 ft/s for this payload weight (with severed reefing lines).
Typical for this system is V; ~ 150 ft/s, attained a few seconds after
being dropped from an aircraft flying at 130 kn, indicated, and at
2000 ft mean sea level; such drop conditions yield
1pV? ~24.7 Ibs/ft>. Given a typical filling time of nfy) ~ 10 for
this parachute type (reefed; large reefing ratio [3]), Eq. (8) gives
ngﬂ ~ 5. On the other hand, the steady-state drag area of the cluster
configuration is given as follows, using a short-bridle configuration
(i.e., canopies flying at a high tilt) [4]:

(SCp)Eser ~ () j(CpS) e ~ 4 x 0.8 x [0.8 x m(100/2 ft)?]
~ 20,096 f2

with the corresponding drag coefficient of a solo parachute set at
Choctusier ~ 0.8 [4]. According to (3), the values of the corresponding
inverse mass ratio stands at R\ = 14.4. Finally, the value of the I'"-
factor becomes I' ~2.43, with the gravitational impulse being
estimated at gD(l)nm]) /V?~1.43 and the momentum change at
1-V;/V;~1 (here Vf/V ~107Y). With If];_yser ~ 0.5 [1], the
resulting value of the maximum drag generated by the cluster stands
at Fp.~44,9171bs or F.,/W ~3.2; an estimate in good
agreement with the measured value F,,, ~ 48,000 Ibs [8].

V. Comparative Study: Cluster Member-Number
Effect

The value of Eq. (9) becomes most obvious when comparing the
maximum drag generated by a cluster of ¥ members to that of a
cluster of j members, with both clusters using the same type of
member parachutes (in other words, only the number of member
parachutes is different). The comparison is performed at the same
deployment altitude and initial fall speed V; and involves three cases.

Case 1: Big parachutes: same total mass

This case involves the following input parameters: D(()') ~ 100 ft
or greater, ng; ~ 10 and V ~ 100-150 ft/s. Here again, the
momentum impulse term gD nﬁll / V?Zin (9) is significantly greater
than the V,/V; term if V, <V, ThlS means that in the ratio
F, ,(ﬂx /F, S{QX, the I'-factors in both the numerator and denominator are
identical and cancel out; likewise, the factors (3oV?) and (CpS){5"*
also cancel out, thus leaving:

Firlgx [kw(k)] 3/2 [R(j)] |:]lf |/ clusler} _ |:I}‘t |j-cluster:| (10)
Fﬁﬁx ]w(]) Rr(;,z() I}'t |k-clusler I}-t |k-clusler

The last step comes about because of R being given by
(D2 p[(CpS) 1332 /m, with the same value of m being used
for both clusters. It is interesting to note that the explicit dependence
on member number and drag efficiency has completely been
cancelled out, although implicit dependence may remain, notably
through the drag integral. To the extent that R¥ and R have the
same order of magnitude, it is expected that the drag integrals I be
the same if k and j are nearly the same, for example when k = 6 and
j =15. This would leave the force ratio at F& / FY, ~ 1. On the
other hand, if k and j are very different, for example k = 6 and j = 2,
one has R'(JIC) > R%) and Ii[<f|j-<:lusler < Ii1~€|k-c1uster [l] thereby glVlIlg
F, / F{) < 1. This follows from the fact that during the early
portions of the inflation process, the k-system decelerates at higher
rates than the j-system because of the extra drag area being present,
thereby yielding less fall rate and less drag force.

Case 2: Small parachutes: same total mass

This case is brought up to again illustrate the influence of the

gravitational impulse term, or rather its lack of thereof. In this
example, ng, ~ 10 and V; ~ 100-150 ft/s once more. What
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changes is the nominal diameter, which is reduced to Df)” ~ 10 ft
while both clusters are used with the same m, V;, and p. The
gD(” ngllf /V? term in (9) becomes similar in magnitude to the V;/V;
term which has an opposite sign, and thus nearly cancel out. And so,

here I ~ 1 for both clusters and the F, ,(,]fgx /F, g;x-ratio is once more
given by (10). This points out that (10) may be a valid approximation
over a wide range of Df)”.

Case 3: Big parachutes: differing total mass and initial fall rate

This example illustrates another use of cluster systems, where the
number of cluster members is dictated by the payload weight: for
example, when adding an extra canopy to the cluster whenever
payload weight exceeds a given value. Here the discussion shall be
simplified by rewriting the total mass in terms of cluster number / and
a unit mass m,, as m = m(l) = Im,,, which translates into

R,(,Il) _ [lw(l)]ﬁ/z (CDS)I clute/m(l)
= ()'PYOP*p(CpS)g™e/m,

But changing payload weight is also bound to change V; in a
nontrivial way. For example, in cases where the value of m,, is large
but where the airspeed of the drop aircraft remains the same, one
could assume V? = V2(I) &« m ~ Im, as long, that is, as adding
cluster members does not appreciably increase the system’s drag area
before inflation. But the exact form of V?(I) does not really matter

when the gravitational impulse becomes dominant in the calculation
of T, as the ratio F, ,(“k;x / FY max becomes

S VR TRy (R) T2 TR [T ewser | V2G) K
FO. Vi) [/W(/)} [R(“][ ]V?(k)NH

if ;
IF |k-cluster J

) |:I:[.t|j-clusler:| (1 1)

f
IF |k-clusler

Unlike (10), the force ratio has become explicitly dependent on the
number of cluster members. In cases where k > j (but are similar in
magnitude), the ratio goes as F ® /F, W1 if
T eruster ~ T j-cluister- The increase in force arises from the increase
in initial fall rate, together with a decrease in mass ratio, i.e., two
factors that conspire to rising F,,.

VI. Cluster vs Single (and Very Large) Parachute

Consider using, at same total weight, a single but very large
parachute instead of a j-cluster, with the size of the single chute being
constrained to yield the same steady-state rate of descent. Here, the
maximum force generated by each system shall be compared while
using again the same V; and p. The new constraint on the size and
drag properties of the single chute translates into
(5Cp)Y = (SCp) ™2, which means that RY) = R\ ™, The force
ratio F, gix /F, nlaf 2) is obtained via the use of Eq. (9) for the cluster and
Eq. (2) for the large single chute. The result is

Fr(r{()ax Cho ”1(111_big) IiFf|1 big
. R
Fbi) — =i v() C(l blg)|: ) ]|: i ]

max Ngn IF |j-c1us(er
L= (V' /VD) + (8D /VD)ngii
1— (Vj(cl_blg)/v,') + (gD(()l_blg)/V,‘z)ngll_blg)

(12)

Equation (12) can be simplified somewhat if both cluster members
and the large single parachute are fabricated with the same shape and
porosity, thus allowing n{"® ~nll) and CUP® ~ C8). It is
expected that in the case of the large chute, the term in
gD\ ™ n{™® /2 shall again dominate because V<V Eq. (12)
is simplified as
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; ; j 1 1
Fi. = Vi) Ifiig 11— (V_;”j)/vi) + (gD(() )/Viz)ni'll;
Foare ~ VL (eD0 ™ Vi

max

if| 1) if|
~ m[ 1F|1—b1g ] D() |: IF|l-b1g ] (]3)

~
if 1-big if
]F |j-c1uster D(() e ]F |j-c1uster

| j—cluster

The last two steps apply when Dgl) is also large enough to make
gravitational impulse the dominant factor with the cluster system.
This result shows that using a single chute could yield lower, or
higher, opening loads relative to using a cluster. In the case of
dominating gD,/V? terms for both parachute systems, the single
large chute generates opening loads that are similar to the cluster’s
because, although involving a longer (dimensional) inflation time,
the system picks up more speed as a result of the momentum gained
through gravity.

VII. Conclusions

It should be noted that, having been derived for purely vertical
trajectories, the results of this paper should provide upper bounds on
the value of F,,, for systems inflating along any ballistic trajectories.
They should also be useful to cases characterized by extreme lead/
lag, i.e., clusters of j parachutes with j—i parachutes opening quickly
and synchronously, with the remaining i parachutes not opening at
all. In this case Eq. (9) could yield force estimates for scenarios that
have the potential of generating larger than nominal opening forces.

The results of this paper provide several new insights on the
physics of clusters of large parachutes, in particular with regard to the
important role played by the extra momentum provided to the system
by gravity, a role enhanced by the large diameter of these canopies (i.
e., Dy~ 100 ft) and by their moderately long filling times (i.e.,
ngy ~ 5-10). As seen previously in [2], gravitational impulse can
also be a dominating effect when the initial speed V; is small enough.
But it can be also suppressed if the parachute is made to inflate
quickly, as will be shown in the case of disreefing parachutes [10].
But gravity is only one of many possible external sources of energy
made available to an inflating parachute. Payloads sustaining a thrust
force via rocket power or via other means represent one obvious
example. Although thrusted payloads appear equivalent to those
subjected to gravity only, important conceptual differences exist,
including the necessity of redefining the concept of mass ratio (i.e.,
R,,), an issue that shall be discussed further in [11].
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